Czworościan foremny

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania
Czworościan foremny
Tetraeder animation with cube.gif
Przykładowe siatki czworościanu foremnego
Kostka do gry w kształcie czworościanu (stosowana m.in. w grach fabularnych)
Siatka czworościanu foremnego z zakładkami umożliwiającymi sklejenie

Czworościan foremny (gr. tetraedr) – czworościan, którego ścianyprzystającymi trójkątami równobocznymi. Jeden z pięciu wielościanów foremnych. Ma 6 krawędzi i 4 wierzchołki. Czworościan foremny jest przykładem trójwymiarowego sympleksu. Czworościan foremny jest dualny do samego siebie. Kanoniczne współrzędne wierzchołków czworościanu mają postać (1, 1, 1), (−1, −1, 1), (−1, 1, −1) i (1, −1, −1).

Czworościan foremny może być wpisany w sześcian na dwa sposoby tak, aby każdy jego wierzchołek pokrywał się z jakimś wierzchołkiem sześcianu, a każda jego krawędź z przekątną jednej ze ścian sześcianu. Objętość każdego z tych czworościanów wynosi 1/3 objętości sześcianu. Suma mnogościowa tych dwóch czworościanów tworzy wielościan zwany stella octangula, a ich część wspólna tworzy ośmiościan foremny.

Czworościany foremne wraz z ośmiościanami foremnymi wystarczą do wypełnienia całej przestrzeni[a]. Ścinając wszystkie wierzchołki czworościanu w 1/3 długości krawędzi, uzyskujemy wielościan półforemny o nazwie czworościan ścięty.

Wzory i własności[edytuj | edytuj kod]

W poniższych wzorach oznacza długość krawędzi czworościanu foremnego.

Pole powierzchni całkowitej:

Objętość:

Wysokość, czyli odległość od dowolnego wierzchołka do środka przeciwległej ściany:

Miara kąta nachylenia krawędzi do ściany, w której krawędź się nie zawiera:

Promień kuli opisanej:

Promień kuli wpisanej:

Promień kuli stycznej do krawędzi czworościanu:

Zależności między promieniami

[b],

Miara kąta między ścianami:

Symetrie. Czworościan foremny ma:

  • płaszczyzn symetrii, każda z nich przechodzi przez jedną z jego krawędzi i środek przeciwległej krawędzi,
  • osie symetrii, każda z nich przechodzi przez środki przeciwległych krawędzi,
  • osie obrotu, każda z nich przechodzi przez wierzchołek czworościanu i środek przeciwległej ściany.

Zobacz też[edytuj | edytuj kod]

Uwagi[edytuj | edytuj kod]

  1. Arystoteles błędnie sądził, że wystarczą czworościany.
  2. Wzory te są 3-wymiarową kontynuacją wzorów dla trójkąta równobocznego, w których promień okręgu opisanego jest jego wysokości a promień okręgu wpisanego jest jego wysokości, patrz ogólna zależność dla sympleksów.