Liczby całkowite
Liczby całkowite – liczby naturalne dodatnie oraz liczby przeciwne do nich a także liczba zero. Są uogólnieniem zbioru liczb naturalnych na zbiór, w którym wykonalne jest odejmowanie. Uogólnieniem liczb całkowitych są liczby wymierne.
Zbiór liczb całkowitych oznaczamy w matematyce symbolem (od niem. Zahlen – liczby). W Polsce w większości szkół podstawowych i średnich, w celu ułatwienia skojarzenia z polską nazwą, stosuje się symbol przy czym MEN zaleca używanie oznaczenia [1].
Definicja formalna[edytuj | edytuj kod]
Zbiór liczb całkowitych można zdefiniować jako zbiór klas abstrakcji zbioru relacji równoważności
Intuicyjnie reprezentuje różnicę
Niech oznacza klasę abstrakcji, której reprezentantem jest Wówczas dodawanie i mnożenie w zbiorze definiuje się jako:
Tak zdefiniowana struktura jest pierścieniem całkowitym, tj. pierścieniem przemiennym z jedynką bez dzielników zera.
Zerem tego pierścienia jest elementem przeciwnym do jest element Jedynką jest
Podzbiór elementów postaci jest izomorficzny z
Ponieważ oraz elementem przeciwnym do więc
Ostatnia zależność potwierdza wyżej wspomnianą intuicję.
Liczby dla których nazywamy liczbami całkowitymi dodatnimi;
liczby dla których nazywamy liczbami całkowitymi ujemnymi.
Liczność[edytuj | edytuj kod]
Zbiór liczb całkowitych jest równoliczny ze zbiorem liczb naturalnych gdyż istnieje funkcja wzajemnie jednoznaczna przypisująca każdej liczbie całkowitej dokładnie jedną liczbę naturalną. Np.:
Zobacz też[edytuj | edytuj kod]
Przypisy[edytuj | edytuj kod]
- ↑ Rozporządzenie Ministra Edukacji Narodowej z dnia 30 stycznia 2018 r. w sprawie podstawy programowej kształcenia ogólnego dla liceum ogólnokształcącego, technikum oraz branżowej szkoły II stopnia. Dz.U. 2018, poz. 467. s. 293. [dostęp 2020-10-07].